Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(6): e0253007, 2021.
Article in English | MEDLINE | ID: covidwho-1264226

ABSTRACT

BACKGROUND: Diagnosis of COVID-19 in symptomatic patients and screening of populations for SARS-CoV-2 infection require access to straightforward, low-cost and high-throughput testing. The recommended nasopharyngeal swab tests are limited by the need of trained professionals and specific consumables and this procedure is poorly accepted as a screening method In contrast, saliva sampling can be self-administered. METHODS: In order to compare saliva and nasopharyngeal/oropharyngeal samples for the detection of SARS-CoV-2, we designed a meta-analysis searching in PubMed up to December 29th, 2020 with the key words "(SARS-CoV-2 OR COVID-19 OR COVID19) AND (salivary OR saliva OR oral fluid)) NOT (review[Publication Type]) NOT (PrePrint[Publication Type])" applying the following criteria: records published in peer reviewed scientific journals, in English, with at least 15 nasopharyngeal/orapharyngeal swabs and saliva paired samples tested by RT-PCR, studies with available raw data including numbers of positive and negative tests with the two sampling methods. For all studies, concordance and sensitivity were calculated and then pooled in a random-effects model. FINDINGS: A total of 377 studies were retrieved, of which 50 were eligible, reporting on 16,473 pairs of nasopharyngeal/oropharyngeal and saliva samples. Meta-analysis showed high concordance, 92.5% (95%CI: 89.5-94.7), across studies and pooled sensitivities of 86.5% (95%CI: 83.4-89.1) and 92.0% (95%CI: 89.1-94.2) from saliva and nasopharyngeal/oropharyngeal swabs respectively. Heterogeneity across studies was 72.0% for saliva and 85.0% for nasopharyngeal/oropharyngeal swabs. INTERPRETATION: Our meta-analysis strongly suggests that saliva could be used for frequent testing of COVID-19 patients and "en masse" screening of populations.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/methods
3.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Article in English | MEDLINE | ID: covidwho-908149

ABSTRACT

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Subject(s)
Betacoronavirus , Severe acute respiratory syndrome-related coronavirus , COVID-19 , Coronavirus Infections , Disease Outbreaks , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL